首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   11篇
  国内免费   17篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   9篇
  2018年   2篇
  2017年   11篇
  2016年   5篇
  2015年   4篇
  2014年   9篇
  2013年   14篇
  2012年   6篇
  2011年   11篇
  2010年   10篇
  2009年   19篇
  2008年   13篇
  2007年   17篇
  2006年   18篇
  2005年   13篇
  2004年   11篇
  2003年   10篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   10篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
排序方式: 共有284条查询结果,搜索用时 22 毫秒
81.
A consequence of simple velocity-based models is that, in response to light pulses, the circadian period should adjust inversely to phase. In addition, because of the interaction of circadian period and phase response, earlier circadian period changes should modify later circadian period changes. The literature contains few mentions of response curves of circadian period responses following light pulses. Rats were exposed to four pulses of light (60 minutes, 1000 lux) at the same circadian time, a minimum of 26 days apart; we assessed period responses and possible bias in the period-response curve. Modulation of circadian period following light-induced phase responses was examined by assessing the period of running wheel activity onset. Phase and circadian period were not consistently found to share an inverse relationship. Moreover, biases in initial period tended to be increased by the experimental protocol regardless of circadian time of pulse. Rats with a short initial (high-velocity) period had a lengthened period, while rats with a long initial period (low velocity) tended to have a reduce period. However, rats with a long initial period were phase delay biased, not phase advance biased. These results do not support a simple velocity model of the pacemaker. (Chronobiology International, 18(2), 187-201, 2001)  相似文献   
82.
Lichtenthaler  H.K.  Babani  F.  Langsdorf  G.  Buschmann  C. 《Photosynthetica》2000,38(4):521-529
With a flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) the photosynthetic activity of several thousand image points of intact shade and sun leaves of beech were screened in a non-destructive way within a few seconds. The photosynthetic activity was determined via imaging the Chl fluorescence at maximum Fp and steady state fluorescence Fs of the induction kinetics (Kautsky effect) and by a subsequent determination of the images of the fluorescence decrease ratio RFd and the ratio Fp/Fs. Both fluorescence ratios are linearly correlated to the photosynthetic CO2 fixation rates. This imaging method permitted to detect the gradients in photosynthetic capacity and the patchiness of photosynthetic quantum conversion across the leaf. Sun leaves of beech showed a higher photosynthetic capacity and differential pigment ratios (Chl a/b and Chls/carotenoids) than shade leaves. Profile analysis and histogram of the Chl fluorescence yield and the Chl fluorescence ratios allow to quantify the differences in photosynthetic activity between different leaf parts and between sun and shade leaves with a high statistical significance.  相似文献   
83.
Within one hr of the administration of cyclosporine to rats, there was a 4-fold elevation in the serum prolactin concentration. Doses of 0.12, 1.2, and 12 micrograms/100 g body weight cyclosporine significantly elevated the serum prolactin level. Higher doses, 120 or 1200 micrograms/100 g body weight cyclosporine resulted in small but insignificant elevations of the serum prolactin concentration. Bromocriptine, a dopamine agonist which inhibits prolactin release from the anterior pituitary, completely blocked the elevation in serum prolactin in response to cyclosporine alone. These data suggest that the ability of cyclosporine to suppress immune function may involve its ability to rapidly produce hyperprolactinemia.  相似文献   
84.
Cell permeabilization by electric pulses (EP), or electroporation, is widely used for intracellular delivery of drugs and plasmids, as well as for tumour and tissue ablation. We found that cells pre‐treated with 100‐μs EP develop delayed hypersensitivity to subsequent EP applications. Sensitizing B16 and CHO cells by splitting a single train of eight 100‐μs EP into two trains of four EP each (with 5‐min. interval) decreased the LD50 1.5–2 times. Sensitization profoundly enhanced the electroporation‐assisted uptake of bleomycin, a cell‐impermeable cytotoxic agent accepted for killing tumours by electrochemotherapy. EP exposures that were not lethal per se caused cell death in the presence of bleomycin and proportionally to its concentration. Sensitizing cells by a split‐dose EP exposure increased bleomycin‐mediated lethality to the same extent as a 10‐fold increase in bleomycin concentration when using a single EP dose. Likewise, sensitization by a split‐dose EP exposure (without changing the overall dose, pulse number, or amplitude) enhanced the electroporative uptake of propidium up to fivefold. Enhancement of the electroporative uptake appears a key mechanism of electrosensitization and may benefit electrochemotherapy and numerous applications that employ EP for cell permeabilization.  相似文献   
85.
Wild pulse accessions are considered a vital source of genes for insect resistance for crop improvement programmes. Wild pulses resistant to infestation towards the bruchid insect pest, Callosobruchus maculatus from South India were chosen to screen the existence of potent insecticidal protein, arcelin from APA locus (Arcelin/Phytohemagglutinin/α-Amylase inhibitor) to ascertain their nature and functional diversity without any specific indication for insect resistant factors. The DNA sequence coding for arcelin from various species of wild pulses were amplified, sequenced and deduced to their protein sequences. These protein sequences were examined physico-chemically using several bioinformatics tools and docked with various sugars to resolve the nature of arcelin molecules. Results indicated the presence of significant differences in the properties of arcelin molecules from various species of Indian wild pulses with their amino acid sequences, several physico-chemical properties and binding ability with sugars. The differences observed on these arcelin molecules from diverse wild pulses are predicted to provide a prospective insect pest control factors.  相似文献   
86.
《Reproductive biology》2021,21(4):100570
By virtue of the secretion of progesterone (P4), corpus luteum (CL) is important not only for normal cyclicity but also for conception and continuation of pregnancy in female mammals. Luteolysis (also called luteal regression) is defined as loss of the capacity to synthesize and secrete P4 followed by the demise of the CL. There is strong evidence that sequential pulses of prostaglandin F2α (PGF) secreted from the uterus near the end of luteal phase induces luteolysis in farm animals. Loss of luteal sensitivity to luteinizing hormone (LH) at the end of menstrual cycle has been reported to be critical for initiation of luteolysis in primates, however this has not been investigated in farm animals. A closer observation of the published real-time profiles of circulating hormones (P4, LH, and PGF) and their inter-relationships around the time of the beginning of spontaneous luteolysis in cattle revealed- 1) A natural pulse of PGF causes a transient P4 suppression lasting a couple of hours followed by a rebound in P4 concentration, 2) The P4 secretions that occur in response to LH pulses before the beginning of luteolysis (i.e., preluteolysis) either fail or do so to a lesser extent during luteolysis indicating a loss of sensitivity to LH, and 3) The loss of sensitivity coincides with the beginning of luteolysis (i.e., transition), and apparently luteolysis does not initiate until there is loss of sensitivity to LH. The CL is sensitive to LH during preluteolysis, and the LH-stimulated P4-dependent and/or independent local survival mechanisms maintain the steroidogenic capability and viability of the CL until the very end of preluteolysis. Luteolysis does not appear to initiate with the PGF pulse(s) that occur during this period. With the loss of sensitivity to LH at the transition, however, a progressive decline in P4 begins initiating luteolysis. Also, the survival mechanisms become compromised making the CL less viable. The uterine PGF pulses that occur after the beginning of luteolysis induces increase in the local luteolytic factors, which contribute to further luteolysis, more importantly, structural luteolysis with ultimate demise of the CL. Therefore, I hypothesize that the loss of luteal sensitivity to LH underlies luteolysis in cattle. The hypothesis not only unifies the basic mechanism of luteolysis in a farm animal and primates but also provides a perspective to view luteolysis as a process rather than a factor-mediated event. A novel unified working model for luteolysis in a farm animal and primates is described. A better understanding of the luteal physiology including how responsiveness to LH diminishes in aging CL would help in the development of novel strategies in modulating CL structure-function to improve and/or control fertility in humans as well as in animals.  相似文献   
87.
Spatially heterogeneous ecosystems form a majority of land types in the vast drylands of the globe. To evaluate climate‐change effects on CO2 fluxes in such ecosystems, it is critical to understand the relative responses of each ecosystem component (microsite). We investigated soil respiration (Rs) at four sites along an aridity gradient (90–780 mm mean annual precipitation, MAP) during almost 2 years. In addition, Rs was measured in rainfall manipulations plots at the two central sites where ~30% droughting and ~30% water supplementation treatments were used over 5 years. Annual Rs was higher by 23% under shrub canopies compared with herbaceous gaps between shrubs, but Rs at both microsites responded similarly to rainfall reduction. Decreasing precipitation and soil water content along the aridity gradient and across rainfall manipulations resulted in a progressive decline in Rs at both microsites, i.e. the drier the conditions, the larger was the effect of reduction in water availability on Rs. Annual Rs on the ecosystem scale decreased at a slope of 256/MAP g C m?2 yr?1 mm?1 (r2=0.97). The reduction in Rs amounted to 77% along the aridity gradient and to 16% across rainfall manipulations. Soil organic carbon (SOC) decreased with declining precipitation, and variation in SOC stocks explained 77% of the variation in annual Rs across sites, rainfall manipulations and microsites. This study shows that rainfall manipulations over several years are a useful tool for experimentally predicting climate‐change effects on CO2 fluxes for time scales (such as approximated by aridity gradients) that are beyond common research periods. Rainfall reduction decreases rates of Rs not only by lowering biological activity, but also by drastically reducing shrub cover. We postulate that future climate change in heterogeneous ecosystems, such as Mediterranean and deserts shrublands will have a major impact on Rs by feedbacks through changes in vegetation structure.  相似文献   
88.
干旱、半干旱环境降水脉动对生态系统的影响   总被引:5,自引:0,他引:5  
干旱、半干旱环境降水事件通常以脉动的形式发生,其发生时间、持续时间以及降水强度均具有较大变异性,降水事件的间断性和不可预知特征导致土壤水分与养分等关键资源的获得也呈不连续的脉动状态.资源脉动对生态系统的影响涉及个体、种群、甚至群落各个尺度.本文从干旱、半干旱环境资源脉动对生态系统的影响,以及生态系统对脉动事件的响应两方面系统综述了近年来的最新研究进展.指出国内外在资源脉动特征对生态系统的影响、不同生态系统资源脉动效应之间存在的差异、影响资源脉动持续时间的生态水文机制、资源可获得性对生态过程的影响等方面的研究尚处于尝试阶段,在全球气候变化、降水格局显著改变背景下,干旱区不同时空尺度资源脉动影响和生态系统响应是未来的研究重点.  相似文献   
89.
Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D‐confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two‐photon photoactivation of PA‐GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time‐dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
90.
Large complete species-level molecular phylogenies can provide the most direct information about the macroevolutionary history of clades having poor fossil records. However, extinction will ultimately erode evidence of pulses of rapid speciation in the deep past. Assessment of how well, and for how long, phylogenies retain the signature of such pulses has hitherto been based on a--probably untenable--model of ongoing diversity-independent diversification. Here, we develop two new tests for changes in diversification 'rules' and evaluate their power to detect sudden increases in equilibrium diversity in clades simulated with diversity-dependent speciation and extinction rates. Pulses of diversification are only detected easily if they occurred recently and if the rate of species turnover at equilibrium is low; rates reported for fossil mammals suggest that the power to detect a doubling of species diversity falls to 50 per cent after less than 50 Myr even with a perfect phylogeny of extant species. Extinction does eventually draw a veil over past dynamics, suggesting that some questions are beyond the limits of inference, but sudden clade-wide pulses of speciation can be detected after many millions of years, even when overall diversity is constrained. Applying our methods to existing phylogenies of mammals and angiosperms identifies intervals of elevated diversification in each.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号